Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Mech Behav Biomed Mater ; 155: 106554, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38676971

ABSTRACT

OBJECTIVES: This study utilized non-linear finite element (FE) models to explore polymerization shrinkage and its impact on marginal integrity in molars following both selective caries removal (SCR) and conventional treatment. Specifically, we performed 2D in silico simulations to study residual stresses post-resin polymerization shrinkage and their influence on the marginal integrity of various restoration types. METHODS: Initially, FE models were developed based on a cohesive zone framework to simulate crack propagation along the bonded interfaces between restoration and tooth structure in SCR-treated molars with class I and class II restorations. The modeled resin composite restorations first underwent polymerization shrinkage and were then subjected to various occlusal loading conditions. Stress magnitudes and distributions were identified to evaluate the margin integrity and predict the mechanism and location of interfacial failure. RESULTS AND DISCUSSION: The FE models computed polymerization shrinkage stresses of less than 1 MPa, exerting a minor influence on the composite/tooth interface. Occlusal loading, however, significantly impacted the load-bearing capacity of the composite/tooth (c/t) interface, potentially jeopardizing the restoration integrity. Especially under bi-axial occlusal loading, interfacial debonding occurred in the vertical cavity walls of the class I restorations, increasing the risk of failure. Notably, SCR-treated teeth exhibited better margin integrity than restored teeth after complete caries removal (NCR). These findings provide valuable insights into the mechanical behavior of SCR-treated teeth under different loading conditions and highlight the importance of considering the load scenarios that may lead to failure at the c/t interface. By investigating the factors influencing crack initiation and delamination, this novel research contributes to the optimization of restorative treatments and aids in the design of more resilient dental restorations.

2.
Acta Biomater ; 179: 164-179, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38513725

ABSTRACT

Failure-resistant designs are particularly crucial for bones subjected to rapid loading, as is the case for the ambush-hunting northern pike (Esox lucius). These fish have slim and low-density osteocyte-lacking bones. As part of the swallowing mechanism, the cleithrum bone opens and closes the jaw. The cleithrum needs sufficient strength and damage tolerance, to withstand years of repetitive rapid gape-and-suck cycles of feeding. The thin wing-shaped bone comprises anisotropic layers of mineralized collagen fibers that exhibit periodic variations in mineral density on the mm and micrometer length scales. Wavy collagen fibrils interconnect these layers yielding a highly anisotropic structure. Hydrated cleithra exhibit Young's moduli spanning 3-9 GPa where the yield stress of ∼40 MPa increases markedly to exceed ∼180 MPa upon drying. This 5x observation of increased strength corresponds to a change to brittle fracture patterns. It matches the emergence of compressive residual strains of ∼0.15% within the mineral crystals due to forces from shrinking collagen layers. Compressive stresses on the nanoscale, combined with the layered anisotropic microstructure on the mm length scale, jointly confer structural stability in the slender and lightweight bones. By employing a range of X-ray, electron and optical imaging and mechanical characterization techniques, we reveal the structure and properties that make the cleithra impressively damage resistant composites. STATEMENT OF SIGNIFICANCE: By combining structural and mechanical characterization techniques spanning the mm to the sub-nanometer length scales, this work provides insights into the structural organization and properties of a resilient bone found in pike fish. Our observations show how the anosteocytic bone within the pectoral gridle of these fish, lacking any biological (remodeling) repair mechanisms, is adapted to sustain natural repeated loading cycles of abrupt jaw-gaping and swallowing. We find residual strains within the mineral apatite nanocrystals that contribute to forming a remarkably resilient composite material. Such information gleaned from bony structures that are different from the usual bones of mammals showcases how nature incorporates smart features that induce damage tolerance in bone material, an adaptation acquired through natural evolutionary processes.


Subject(s)
Esocidae , Animals , Esocidae/physiology , Bone and Bones/physiology , Stress, Mechanical , Nanoparticles/chemistry , Compressive Strength , Biological Evolution , Elastic Modulus , Collagen/chemistry
3.
J Synchrotron Radiat ; 31(Pt 1): 136-149, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38095668

ABSTRACT

Bone material contains a hierarchical network of micro- and nano-cavities and channels, known as the lacuna-canalicular network (LCN), that is thought to play an important role in mechanobiology and turnover. The LCN comprises micrometer-sized lacunae, voids that house osteocytes, and submicrometer-sized canaliculi that connect bone cells. Characterization of this network in three dimensions is crucial for many bone studies. To quantify X-ray Zernike phase-contrast nanotomography data, deep learning is used to isolate and assess porosity in artifact-laden tomographies of zebrafish bones. A technical solution is proposed to overcome the halo and shade-off domains in order to reliably obtain the distribution and morphology of the LCN in the tomographic data. Convolutional neural network (CNN) models are utilized with increasing numbers of images, repeatedly validated by `error loss' and `accuracy' metrics. U-Net and Sensor3D CNN models were trained on data obtained from two different synchrotron Zernike phase-contrast transmission X-ray microscopes, the ANATOMIX beamline at SOLEIL (Paris, France) and the P05 beamline at PETRA III (Hamburg, Germany). The Sensor3D CNN model with a smaller batch size of 32 and a training data size of 70 images showed the best performance (accuracy 0.983 and error loss 0.032). The analysis procedures, validated by comparison with human-identified ground-truth images, correctly identified the voids within the bone matrix. This proposed approach may have further application to classify structures in volumetric images that contain non-linear artifacts that degrade image quality and hinder feature identification.


Subject(s)
Deep Learning , Animals , Humans , Artifacts , Porosity , Zebrafish , Bone and Bones/diagnostic imaging , Image Processing, Computer-Assisted/methods
4.
Biomimetics (Basel) ; 8(7)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37999150

ABSTRACT

Dry fruits and nutshells are biological capsules of outstanding toughness and strength with biomimetic potential to boost fiber-reinforced composites and protective structures. The strategies behind the Betholletia excelsa fruit mechanical performance were investigated with C-ring and compression tests. This last test was monitored with shearography and simulated with a finite element model. Microtomography and digital and scanning electron microscopy evaluated crack development. The fruit geometry, the preferential orientation of fibers involved in foam-like sclereid cells, promoted anisotropic properties but efficient energy dissipating mechanisms in different directions. For instance, the mesocarp cut parallel to its latitudinal section sustained higher forces (26.0 ± 2.8 kN) and showed higher deformation and slower crack propagation. The main toughening mechanisms are fiber deflection and fiber bridging and pullout, observed when fiber bundles are orthogonal to the crack path. Additionally, the debonding of fiber bundles oriented parallel to the crack path and intercellular cracks through sclereid and fiber cells created a tortuous path.

5.
Front Bioeng Biotechnol ; 11: 1116917, 2023.
Article in English | MEDLINE | ID: mdl-36911186

ABSTRACT

Electrospinning emerged as a promising technique to produce scaffolds for cultivated meat in function of its simplicity, versatility, cost-effectiveness, and scalability. Cellulose acetate (CA) is a biocompatible and low-cost material that support cell adhesion and proliferation. Here we investigated CA nanofibers, associated or not with a bioactive annatto extract (CA@A), a food-dye, as potential scaffolds for cultivated meat and muscle tissue engineering. The obtained CA nanofibers were evaluated concerning its physicochemical, morphological, mechanical and biological traits. UV-vis spectroscopy and contact angle measurements confirmed the annatto extract incorporation into the CA nanofibers and the surface wettability of both scaffolds, respectively. SEM images revealed that the scaffolds are porous, containing fibers with no specific alignment. Compared with the pure CA nanofibers, CA@A nanofibers showed increased fiber diameter (420 ± 212 nm vs. 284 ± 130 nm). Mechanical properties revealed that the annatto extract induces a reduction of the stiffness of the scaffold. Molecular analyses revealed that while CA scaffold favored C2C12 myoblast differentiation, the annatto-loaded CA scaffold favored a proliferative state of these cells. These results suggest that the combination of cellulose acetate fibers loaded with annatto extract may be an interesting economical alternative for support long-term muscle cells culture with potential application as scaffold for cultivated meat and muscle tissue engineering.

6.
Fungal Biol Biotechnol ; 9(1): 4, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35209941

ABSTRACT

BACKGROUND: Filamentous fungi of the phylum Basidiomycota are considered as an attractive source for the biotechnological production of composite materials. The ability of many basidiomycetes to accept residual lignocellulosic plant biomass from agriculture and forestry such as straw, shives and sawdust as substrates and to bind and glue together these otherwise loose but reinforcing substrate particles into their mycelial network, makes them ideal candidates to produce biological composites to replace petroleum-based synthetic plastics and foams in the near future. RESULTS: Here, we describe for the first time the application potential of the tinder fungus Fomes fomentarius for lab-scale production of mycelium composites. We used fine, medium and coarse particle fractions of hemp shives and rapeseed straw to produce a set of diverse composite materials and show that the mechanical materials properties are dependent on the nature and particle size of the substrates. Compression tests and scanning electron microscopy were used to characterize composite material properties and to model their compression behaviour by numerical simulations. Their properties were compared amongst each other and with the benchmark expanded polystyrene (EPS), a petroleum-based foam used for thermal isolation in the construction industry. Our analyses uncovered that EPS shows an elastic modulus of 2.37 ± 0.17 MPa which is 4-times higher compared to the F. fomentarius composite materials whereas the compressive strength of 0.09 ± 0.003 MPa is in the range of the fungal composite material. However, when comparing the ability to take up compressive forces at higher strain values, the fungal composites performed better than EPS. Hemp-shive based composites were able to resist a compressive force of 0.2 MPa at 50% compression, rapeseed composites 0.3 MPa but EPS only 0.15 MPa. CONCLUSION: The data obtained in this study suggest that F. fomentarius constitutes a promising cell factory for the future production of fungal composite materials with similar mechanical behaviour as synthetic foams such as EPS. Future work will focus on designing materials characteristics through optimizing substrate properties, cultivation conditions and by modulating growth and cell wall composition of F. fomentarius, i.e. factors that contribute on the meso- and microscale level to the composite behaviour.

7.
Acta Biomater ; 140: 350-363, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34740856

ABSTRACT

Polymer based composites are widely used for treatment, for example as biofilm resistant seals of root canal fillings. Such clinical use, however, fails more frequently than other dental composite restorations, due to stress-related misfits. The reason for this is that the biomaterials used are inserted as viscous masses that may bond to the substrate, yet shrinkage stresses arising during setting of the cross-linking polymer, work against durable adhesion. Here we combine phase contrast enhanced time-lapse radiography (radioscopy), digital image correlation (DIC) and submicrometer resolution phase-contrast enhanced microtomography (PCE-CT), to reveal the spatial and temporal dynamics of composite polymerization and strain evolution. Radioscopy of cavities located in the upper part of human root canals demonstrates how the composite post-gelation "densification" is dominated by viscous flow with quantifiable motion of both particles and entrapped voids. Thereafter, these composites enter a "stress-relaxation" stage and exhibit several structural adaptations, induced by residual shrinkage stresses. Consequently critical alterations to the final biomaterial geometry emerge: (i) entrapped bubbles expand; (ii) microscopic root filling pull-out occurs; (iii) the cavity walls deform inwards, and (iv) occasionally delamination ensues, propagating out from the root canal filling along buried restoration-substrate interfaces. Our findings shed new light on the interactions between confined spaces and biomedical composites that cross-link in situ, highlighting the crucial role of geometry in channeling residual stresses. They further provide new insights into the emergence of structural flaws, calling attention to the need to find new treatment options. STATEMENT OF SIGNIFICANCE: This work quantifies recurring spatial and temporal material redistribution in composites used clinically to fill internal spaces in teeth. This knowledge is important for both promoting biomaterial resistance against potentially pathologic biofilms and for improving structural capacity to endure years of mechanical function. Our study demonstrates the significant role of geometry and the need for improved control over stress raisers to develop better treatment protocols and new space filling materials. The use of high-brilliance X-rays for time-lapse imaging at submicrometer resolution provides dynamic information about the damaging effects of stress relaxation due to polymerization shrinkage.


Subject(s)
Composite Resins , Dental Pulp Cavity , Composite Resins/chemistry , Dental Pulp Cavity/diagnostic imaging , Dental Restoration, Permanent , Humans , Materials Testing , Polymerization , Time-Lapse Imaging
8.
J Struct Biol ; 213(2): 107726, 2021 06.
Article in English | MEDLINE | ID: mdl-33781897

ABSTRACT

In the course of a lifetime the crowns of teeth wear off, cementum thickens and the pulp closes-in or may stiffen. Little is known about how these changes affect the tooth response to load. Using a series of finite element models of teeth attached to the jawbone, and by comparing these to a validated model of a 'young' pig 3-rooted tooth, the effects of these structural changes were studied. Models of altered teeth show a stiffer response to mastication even when material properties used are identical to those found in 'young' teeth. This stiffening response to occlusal loads is mostly caused by the thicker cementum found in 'old' teeth. Tensile stresses associated with bending of dentine in the roots fall into a narrower distribution range with lower peak values. It is speculated that this is a possible protective adaptation mechanism of the aging tooth to avoid fracture. The greatest reduction in lateral motion was seen in the bucco-lingual direction. We propose that greater tooth motion during mastication is typical for the young growing animal. This motion is reduced in adulthood, favoring less off-axis loading, possibly to counteract natural bone resorption and consequent compromised anchoring.


Subject(s)
Aging/physiology , Dental Cementum/physiology , Mastication/physiology , Tooth Mobility/physiopathology , Tooth Root/physiology , Animals , Computer Simulation , Finite Element Analysis , Jaw/physiology , Models, Biological , Molar/physiology , Swine , Tooth Root/physiopathology
9.
J Mech Behav Biomed Mater ; 116: 104306, 2021 04.
Article in English | MEDLINE | ID: mdl-33513460

ABSTRACT

Brazil nut (Bertholletia excelsa) fruits are capable of resisting high mechanical forces when released from trees as tall as 50 m, as well as during animal dispersal by sharp-teethed rodents. Thick mesocarp plays a crucial part in seed protection. We investigated the role of microstructure and how sclereids, fibers, and voids affect nutshell performance using compression, tensile and fracture toughness tests. Fractured specimens were analyzed through scanning electron microscopy (SEM) and microtomography (microCT). Mesocarp showed high deformability (strain at max. stress of ~30%) under compression loading, a critical tensile strength of ~24.9 MPa, a Weibull modulus of ~3, and an elastic modulus of ~2 GPa in the tensile test. The fracture toughness, estimated through the work of fracture of SENB tests, reached ~2 kJ/m2. The thick and strong walls of mesocarp cells, with a weaker boundary between them (compound middle lamella), promote a tortuous intercellular crack path. Several toughening mechanisms, such as crack deflection, breaking of fiber bundles, fiber pullout and bridging as well as crack branching, occur depending on how fiber bundles and voids are oriented.


Subject(s)
Bertholletia , Animals , Elastic Modulus , Fruit , Microscopy, Electron, Scanning , Seeds , Stress, Mechanical , Tensile Strength
10.
Acta Biomater ; 120: 91-103, 2021 01 15.
Article in English | MEDLINE | ID: mdl-32927090

ABSTRACT

Bone-like materials comprise carbonated-hydroxyapatite nanocrystals (c-Ap) embedding a fibrillar collagen matrix. The mineral particles stiffen the nanocomposite by tight attachment to the protein fibrils creating a high strength and toughness material. The nanometer dimensions of c-Ap crystals make it very challenging to measure their mechanical properties. Mineral in bony tissues such as dentine contains 2~6 wt.% carbonate with possibly different elastic properties as compared with crystalline hydroxyapatite. Here we determine strain in biogenic apatite nanocrystals by directly measuring atomic deformation in pig dentine before and after removing carbonate. Transmission electron microscopy revealed the platy 3D morphology while atom probe tomography revealed carbon inside the calcium rich domains. High-energy X-ray diffraction in combination with in situ hydrostatic pressurization quantified reversible c-Ap deformations. Crystal strains differed between annealed and ashed (decarbonated) samples, following 1 or 10 h heating at 250 °C or 550 °C respectively. Measured bulk moduli (K) and a-/c-lattice deformation ratios (η) were used to generate synthetic Ksyn and ηsyn identifying the most likely elastic constants C33 and C13 for c-Ap. These were then used to calculate the nanoparticle elastic moduli. For ashed samples, we find an average E11=107 GPa and E33 =128 GPa corresponding to ~5% and ~17% stiffening of the a-/c-axes of the nanocrystals as compared with the biogenic nanocrystals in annealed samples. Ashed samples exhibit ~10% lower Poisson's ratios as compared with the 0.25~0.36 range of carbonated apatite. Carbonate in c-Ap may therefore serve for tuning local deformability within bony tissues. STATEMENT OF SIGNIFICANCE: Carbonated apatite nanoparticles, typical for bony tissues, stiffen the network of collagen fibrils. However, it is not known if the biogenic apatite mechanical (elastic) properties differ from those of geologic mineral counterparts. Indeed the tiny dimensions and variable carbonate composition may have strong effects on deformation resistance. The present study provides experimental measurements of the elastic constants which we use to estimate Young's moduli and Poisson's ratio values. Comparison between ashed and annealed dentine samples quantifies the properties of both carbonated and decarbonated apatite nanocrystals. The results reveal fundamental attributes of bony mineral and showcase the additive advantages of combining X-ray diffraction with in situ hydrostatic compression, backed by atom probe and transmission electron microscopy tomography.


Subject(s)
Apatites , Nanoparticles , Animals , Carbonates , Dentin , Swine , X-Ray Diffraction
11.
Dent Mater ; 37(3): e162-e175, 2021 03.
Article in English | MEDLINE | ID: mdl-33358015

ABSTRACT

OBJECTIVES: Selective caries removal (SCR) is recommended over non-selective removal for managing deep carious lesions to avoid pulp exposure and maintain pulp vitality. During SCR, residual carious dentin is left behind and sealed beneath the restoration. The biomechanical effects of such residual lesions on the restored tooth remain unclear and were assessed using finite element modeling (FEM). METHODS: Based on µ-CT images of a healthy permanent human third molar, we developed five finite element models. Generic class I and II cavity restorations were modeled where residual lesions of variable sizes were either left or fully removed on occlusal and proximal surfaces. The cavities were restored with adhesive composite. All 3D-FE models were compared with a model of a healthy, non-treated molar. A vertical load of 100 N was applied onto the occlusal surface. RESULTS: Regardless of the lesion size, in molars with occlusal lesions higher mean stresses were predicted along the filling-lesion interface than in all other models. The smallest occlusal lesion (Ø1 = 1 mm) resulted in the highest maximum stresses at the filling-lesion interface with large stress concentrations at the filling walls indicating failure risk. In conclusion, lesion site and extent are influencing parameters affecting the filling-lesion interactions and thus the biomechanical behavior of the tooth after SCR. SIGNIFICANCE: Retaining carious lesions around the pulpal floor affects the deformation and stress states in tooth-filling complexes. The higher stresses observed in molars with occlusal lesions may affect restoration stability and longevity. Suprisingly, more extended occlusal lesions may provide a more favorable tooth performance than less extended ones. In contrast, in molars with proximal lesions the residual lesion had only limited effect on the tooth's biomechanical condition.


Subject(s)
Dental Caries , Dental Restoration, Permanent , Composite Resins , Dental Caries/therapy , Dental Caries Susceptibility , Finite Element Analysis , Humans , Molar
12.
Sci Rep ; 10(1): 6786, 2020 04 22.
Article in English | MEDLINE | ID: mdl-32321974

ABSTRACT

Aiming to understand Nature´s strategies that inspire new composite materials, the hierarchical levels of organization of the Brazil nut (Bertholletia excelsa) mesocarp were investigated. Optical microscopy, scanning electron microscopy (SEM), microtomography (MicroCT) and small-angle X-ray scattering (SAXS) were used to deeply describe the cellular and fibrillary levels of organization. The mesocarp is the middle layer of the fruit which has developed several strategies to avoid its opening and protect its seed. Fibers have a different orientation in the three layers of the mesocarp, what reduces the anisotropy of the structure. Sclereids cells with thick cell walls fill the spaces between the fibers resembling a foam-filled structural composite. The mesocarp has several tubular channels and fractured surfaces which may work as sites for crack trapping and increase toughness. The thick and lignified cell wall of sclereids and fibers and the weak interface between cells can promote a longer and tortuous intercellular crack path. Additionally, fibers with high strength and stiffness due to microfibrils oriented along the main cell axis (µ = 0° to 17°) were identified in the innermost layer of the mesocarp. Such an understanding of each hierarchical level can inspire the development of new cellular composites with improved mechanical behavior.


Subject(s)
Bertholletia/metabolism , Cell Wall/metabolism , Fruit/metabolism , Microfibrils/metabolism , Seeds/metabolism , Algorithms , Bertholletia/anatomy & histology , Bertholletia/ultrastructure , Cell Wall/ultrastructure , Fruit/anatomy & histology , Fruit/ultrastructure , Humans , Microfibrils/ultrastructure , Microscopy, Electron, Scanning/methods , Scattering, Small Angle , Seeds/anatomy & histology , Seeds/ultrastructure , X-Ray Diffraction/methods , X-Ray Microtomography/methods
13.
Bone ; 133: 115246, 2020 04.
Article in English | MEDLINE | ID: mdl-31992525
14.
Bone ; 132: 115178, 2020 03.
Article in English | MEDLINE | ID: mdl-31816420

ABSTRACT

Teeth with intact crowns rarely split or fracture, despite decades of cyclic loading and occasional unexpected overload. This is largely attributed to the presence of dentine, since cracking and fracture of enamel have been frequently reported. Dentine is similar to bone, comprising mineralised collagen fibres as a main constituent. Unlike cortical bone, however, where microcracking and damage arrest are essential for re/modelling and healing, dentine can neither remodel nor regenerate. This raises questions regarding the evolutionary benefits of toughening, leading to uncertainty whether cracks actually appear in dentine in situ. Here we study the notion that circumpulpal dentine is usually protected against, rather than damaged by severe overloads, even though it is not much more massive or stronger than it needs to be. To address this, we examined hydrated teeth still within whole jawbones of freshly-slaughtered skeletally mature pigs, mechanically loaded until fracture. Force displacement curves, optical and electron microscopy combined with 3D microstructural analysis by conventional micro-computed tomography (µCT) revealed mostly brittle fracture paths in circumpulpal crown dentine. Once overload cracks reach this mass of dentine they propagate rapidly along straight paths often parallel to the enamel flanks of the oblong shovel shaped premolars. We find infrequent signs of active toughening mechanisms with minimal crack diversion, ligament bridging and microcracking. When such toughening is seen, it mainly appears in softer dentine in the root, or near the dentine-enamel-junction (DEJ) in mantle dentine. We observed shear bands in overloaded circumpulpal dentine, due to mutual gliding of upper and lower segments. These shear bands are formed as periodic arrays of rotated dentine fragments. The 3D data consistently demonstrate the importance of the layered tooth structure, containing a stiff outer enamel shell, a soft sub-DEJ interlayer and a stiff circumpulpal dentine bulk, for deflecting cracks from splitting the tooth.


Subject(s)
Fractures, Bone , Tooth , Animals , Bone and Bones , Dentin , Swine , X-Ray Microtomography
15.
Materials (Basel) ; 12(20)2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31640278

ABSTRACT

In the present study, Mg nanocomposites with a high volume fraction (10 vol %) of SiC particles were fabricated by two approaches: mechanical milling and mixing, followed by the powder consolidation steps, including isostatic cold pressing, sintering, and extrusion. A uniform distribution of the high content SiC particles in a fully dense Mg matrix with ultrafine microstructure was successfully achieved in the mechanically milled composites. The effect of nano- and submicron-sized SiC particles on the microstructure and mechanical properties of the nanocomposites was evaluated. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectrometer (EDS), and X-ray diffractometry (XRD) were used to characterize microstructures of the milled and mixed composites. Mechanical behavior of the Mg composites was studied under nanoindentation and compressive loading to understand the effects the microstructural modification on the strength and ductility of the Mg/SiC composites. The mechanical properties of the composites showed a significant difference regarding the size and distribution of SiC particles in the Mg matrix. The enhanced strength and superior ductility achieved in the mechanically milled Mg composites are mainly ascribed to the effective load transfer between matrix and SiC particles, grain refinement of the matrix, and strengthening effects of the nano- and submicron-sized SiC particles.

16.
Biometals ; 32(2): 185-193, 2019 04.
Article in English | MEDLINE | ID: mdl-30659451

ABSTRACT

The study of innovative biodegradable implant materials is one of the most interesting research topics at the forefront in the area of biomaterials. Biodegradable implant materials in the human body can be gradually dissolved, absorbed, consumed or excreted, so there is no need for the secondary surgery to remove implants after the surgery regions have healed. However, most of the biodegradable materials, usually polymers, do not have good mechanical properties to be reliable for bearing the load of the body. Magnesium and its alloys due to the excellent biodegradability and biocompatibility as well as the suitable mechanical compatibility with human bone are very promising candidates for the development of temporary, degradable implants in load-bearing applications. However, Mg alloys are corrosion susceptible in a biological environment. Besides, the high corrosion rate and the low bioactivity of magnesium implants are the challenging problems, which need to be resolved before employing them in clinical applications. This paper provides a review of state-of-the-art of magnesium alloy implants for orthopedic and tissue engineering applications and describes recent progress in the design of novel structure design Mg alloys and potential approaches to improve their biodegradation performance.


Subject(s)
Alloys/metabolism , Biocompatible Materials/metabolism , Magnesium/metabolism , Orthopedics , Prostheses and Implants , Alloys/chemistry , Biocompatible Materials/chemistry , Humans , Magnesium/chemistry
17.
Mol Biol Evol ; 34(11): 2959-2969, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28961798

ABSTRACT

Despite the evolutionary success and ancient heritage of the molluscan shell, little is known about the molecular details of its formation, evolutionary origins, or the interactions between the material properties of the shell and its organic constituents. In contrast to this dearth of information, a growing collection of molluscan shell-forming proteomes and transcriptomes suggest they are comprised of both deeply conserved, and lineage specific elements. Analyses of these sequence data sets have suggested that mechanisms such as exon shuffling, gene co-option, and gene family expansion facilitated the rapid evolution of shell-forming proteomes and supported the diversification of this phylum specific structure. In order to further investigate and test these ideas we have examined the molecular features and spatial expression patterns of two shell-forming genes (Lustrin and ML1A2) and coupled these observations with materials properties measurements of shells from a group of closely related gastropods (abalone). We find that the prominent "GS" domain of Lustrin, a domain believed to confer elastomeric properties to the shell, varies significantly in length between the species we investigated. Furthermore, the spatial expression patterns of Lustrin and ML1A2 also vary significantly between species, suggesting that both protein architecture, and the regulation of spatial gene expression patterns, are important drivers of molluscan shell evolution. Variation in these molecular features might relate to certain materials properties of the shells of these species. These insights reveal an important and underappreciated source of variation within shell-forming proteomes that must contribute to the diversity of molluscan shell phenotypes.


Subject(s)
Calcification, Physiologic/genetics , Extracellular Matrix Proteins/genetics , Mollusca/genetics , Amino Acid Sequence , Animal Shells/metabolism , Animals , Biological Evolution , Evolution, Molecular , Gastropoda/genetics , Gene Expression Regulation/genetics , Genetic Variation/genetics , Proteome/genetics , Transcriptome
18.
J Mech Behav Biomed Mater ; 67: 61-73, 2017 03.
Article in English | MEDLINE | ID: mdl-27987427

ABSTRACT

When mammalian teeth breakdown food, several juxtaposed dental tissues work mechanically together, while balancing requirements of food comminution and avoiding damage to the oral tissues. One important way to achieve this is by channeling mastication forces into the surrounding jaw bone through a thin and compliant soft tissue, the periodontal ligament (PDL). As a result, during a typical chewing stroke, each tooth moves quite substantially in its anchor-site. Here we report a series of experiments, where we study the reaction of three-rooted teeth to a single chewing event by finite element (FE) modelling. The nonlinear behaviour of the PDL is simulated by a hyperelastic material model and the in silico results are validated by our own in vitro experiments. We examine the displacement response of the complete tooth-PDL-bone complex to increasing chewing loads. We observe that small spatially-varying geometric adjustments to the thickness of the PDL lead to strong changes in observed tooth reaction movement, as well as PDL strain and bone stress. When reproducing the regionally varying thickness of the PDL observed in vivo, FE simulations reveal subtle but significant tooth motion that leads to an even distribution of the stresses in the jaw bone, and to lower strains in the PDL. Our in silico experiments also reproduce the results of experiments performed by others on different animal models and are therefore useful for overcoming the difficulties of obtaining tooth-PDL-bone loading estimates in vivo. This data thus enhances our understanding of the role the variable PDL geometry plays in the tooth-PDL-bone complex during mastication.


Subject(s)
Mastication , Periodontal Ligament/physiology , Tooth/physiology , Animals , Biomechanical Phenomena , Female , Finite Element Analysis , Stress, Mechanical , Swine
19.
Bioinspir Biomim ; 11(5): 051003, 2016 09 12.
Article in English | MEDLINE | ID: mdl-27615450

ABSTRACT

The main mass of material found in teeth is dentine, a bone-like tissue, riddled with micron-sized tubules and devoid of living cells. It provides support to the outer wear-resistant layer of enamel, and exhibits toughening mechanisms which contribute to crack resistance. And yet unlike most bone tissues, dentine does not remodel and consequently any accumulated damage does not 'self repair'. Because damage containment followed by tissue replacement is a prime reason for the crack-arresting microstructures found in most bones, the occurrence of toughening mechanisms without the biological capability to repair is puzzling. Here we consider the notion that dentine might be overdesigned for strength, because it has to compensate for the lack of cell-mediated healing mechanisms. Based on our own and on literature-reported observations, including quasistatic and fatigue properties, dentine design principles are discussed in light of the functional conditions under which teeth evolved. We conclude that dentine is only slightly overdesigned for everyday cyclic loading because usual mastication stresses may come close to its endurance strength. The in-built toughening mechanisms constitute an evolutionary benefit because they prevent catastrophic failure during rare overload events, which was probably very advantageous in our hunter gatherer ancestor times. From a bio-inspired perspective, understanding the extent of evolutionary overdesign might be useful for optimising biomimetic structures used for load bearing.


Subject(s)
Biological Evolution , Dentin/physiology , Bite Force , Bone Remodeling/physiology , Bone and Bones/physiology , Dental Enamel , Humans
20.
J Mech Behav Biomed Mater ; 50: 171-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26143350

ABSTRACT

Tooth dentine and other bone-like materials contain carbonated hydroxyapatite nanoparticles within a network of collagen fibrils. It is widely assumed that the elastic properties of biogenic hydroxyapatites are identical to those of geological apatite. By applying hydrostatic pressure and by in situ measurements of the a- and c- lattice parameters using high energy X-ray diffraction, we characterize the anisotropic deformability of the mineral in the crowns and roots of teeth. The collected data allowed us to calculate the bulk modulus and to derive precise estimates of Young׳s moduli and Poisson׳s ratios of the biogenic mineral particles. The results show that the dentine apatite particles are about 20% less stiff than geological and synthetic apatites and that the mineral has an average bulk modulus K=82.7 GPa. A 5% anisotropy is observed in the derived values of Young׳s moduli, with E11≈91 GPa and E33≈96 GPa, indicating that the nanoparticles are only slightly stiffer along their long axis. Poisson׳s ratio spans ν≈0.30-0.35, as expected. Our findings suggest that the carbonated nanoparticles of biogenic apatite are significantly softer than previously thought and that their elastic properties can be considered to be nearly isotropic.


Subject(s)
Apatites/chemistry , Dentin/chemistry , Mechanical Phenomena , X-Ray Diffraction , Biomechanical Phenomena , Elasticity , Hydrostatic Pressure , Materials Testing , Models, Molecular , Molecular Conformation , Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...